Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 52(4-5): 459-471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36583735

RESUMO

Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.


Assuntos
Microfluídica , Proteínas , Microfluídica/métodos , Difusão
2.
Food Chem ; 408: 135229, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563618

RESUMO

The properties of milk proteins differ between mammalian species. ß-Lactoglobulin (ßlg) proteins from caprine and bovine milk are sequentially and structurally highly similar, yet their physicochemical properties differ, particularly in response to pH. To resolve this conundrum, we compared the dynamics of both the monomeric and dimeric states for each homologue at pH 6.9 and 7.5 using hydrogen/deuterium exchange experiments. At pH 7.5, the rate of exchange is similar across both homologues, but at pH 6.9 the dimeric states of the bovine ßlg B variant homologue have significantly more conformational flexibility compared with caprine ßlg. Molecular dynamics simulations provide a mechanistic rationale for the experimental observations, revealing that variant-specific substitutions encode different conformational ensembles with different dynamic properties consistent with the hydrogen/deuterium exchange experiments. Understanding the dynamic differences across ßlg homologues is essential to understand the different responses of these milks to processing, human digestion, and differences in immunogenicity.


Assuntos
Cabras , Lactoglobulinas , Humanos , Animais , Lactoglobulinas/genética , Lactoglobulinas/química , Deutério , Cabras/genética , Hidrogênio , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...